

Contact networks of small mammals highlight potential transmission foci of Lassa mammarenavirus

Dr. David Simons, Pennsylvania State University

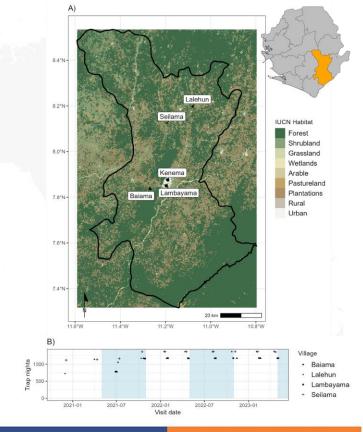
Lassa virus transmission is driven by its reservoir, but the role of habitat-specific community interactions is a key knowledge gap.

- Mammarenavirus lassaense (LASV) is a zoonosis of major public health importance in West Africa
- Transmission is maintained in and spills over from its primary reservoir, (*Mastomys natalensis*).
- Human land use alters small mammal communities, but how this affects the *contact* patterns relevant to transmission is poorly understood.

We used a network approach to quantify how land use shapes potential LASV transmission pathways.

We aimed to answer three questions:

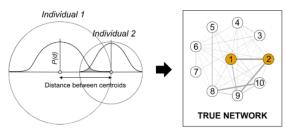
- 1. How does small-mammal **contact network structure** differ across forest, agriculture, and village habitats?
- 2. What is the **LASV seroprevalence** and species distribution in this multi-host community?
- 3. Is an individual's **position within the network** associated with its LASV serostatus?

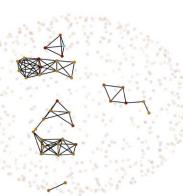


We conducted extensive trapping across an anthropogenic gradient in endemic Eastern

Province, Sierra Leone.

 Location: Four village sites in a known LASVendemic zone.


- Sampling Effort: 43,266 trap-nights over three years (Oct 2020 Apr 2023).
- Habitats: Trapping grids established in three distinct land-use types:
 - Villages (human dwellings)
 - Agriculture (active and fallow farms)
 - Forest (less disturbed areas)

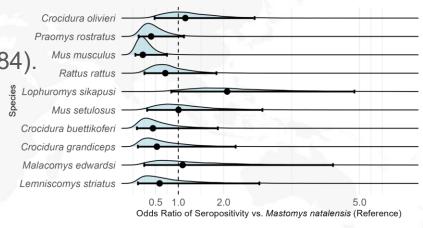


We inferred contact networks from spatiotemporal co-occurrence within speciesspecific home ranges.

- Contact Definition: An "edge" was inferred between two individuals (nodes) if they were trapped:
 - During the same 4-night session...
 - ...within a species-specific home range radius (e.g., M. natalensis = 10.6 m).
- Serology: LASV IgG ELISA performed on blood samples to determine past exposure.
- Analysis:
 - Network structure metrics (degree, modularity).
 - Exponential-Family Random Graph Models (ERGMs) to model contact probability.

Species

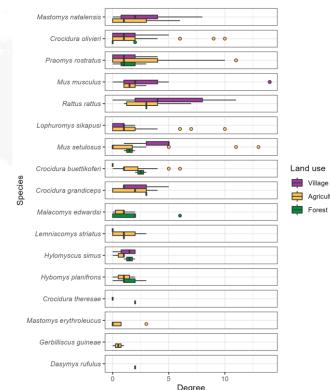
- Mastomys natalensis
- Crocidura olivieri
- Praomys rostratus
- Mus musculus
- Natios latios
- Lophuromys sikapus
- a cprimarily a sinapas
- Considered benefitsely
- Crocidura buettikoleri
- Crocidura grandiceps


 Malacomys edwardsi

 Lemniscomys striatus
- Hylomyscus simus
- Hylomyscus simus
 Hybomys planifrons
 Crocidura theresae
 Mastomys erythroleucus
 Gerbilliscus guineae
 Dasymys rufulus
- Other

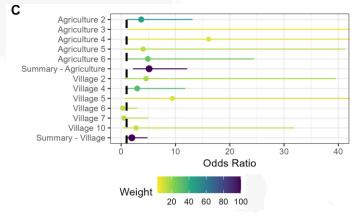
LASV exposure was found across a diverse, multi-host community, extending beyond the primary reservoir.

- 684 individuals captured, representing 17 species.
- Overall LASV seroprevalence: 5.7% (39/684).
- Antibodies were detected in 9 species.
- Major seropositive contributors:
 - Mastomys natalensis (28% of positives)
 - Lophuromys sikapusi (21%)
 - Crocidura olivieri (21%)

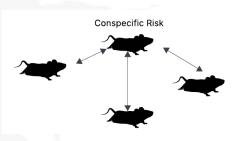


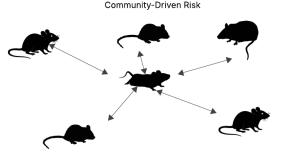
Contact network structure is fundamentally different across habitats, shaping

interaction opportunities.


- Villages: Highest connectivity (mean degree = 3.4), dominated by commensals (*R. rattus, M. musculus*).
- Agriculture: High species mixing and network fragmentation (modularity). Hubs for inter-specific contact.
- Forest: Lowest overall connectivity (mean degree = 1.4).

Agricultural landscapes, not villages, drive significant intra-specific clustering of the reservoir host, *M. natalensis*.


- ERGM results show the probability of M. natalensis contacting conspecifics:
 - Agriculture: Significantly more likely to form contacts with each other. OR = 5.14 (95% CI: 2.17–12.2)
 - Villages: No significant preference for conspecific contact.
 OR = 1.96 (95% CI: 0.79–4.82)
- Implication: Agricultural settings may be key foci for LASV amplification within the primary reservoir population.



The link between contact and infection is complex, with inter-specific contacts driving risk for highly-connected individuals.

- Counter-intuitively, seropositive individuals had a lower mean number of contacts (degree).
- However, modelling risk in *M. natalensis* reveals a crucial interaction:
 - Risk increases with total contacts (degree): OR = 1.25
 - Risk increases with conspecific contacts (homophily): OR = 2.02
 - Negative Interaction (Degree x Homophily): OR = 0.52
- **Interpretation:** For highly-connected individuals, risk is associated with volume of contacts, particularly with other species.

Habitat shapes a dual-transmission dynamic: intra-specific amplification in agriculture and community-driven risk at network hubs.

- Our findings point to agricultural landscapes as potential amplification sites, where high rates of contact within *M. natalensis* can sustain transmission.
- However, the broader multi-host community plays a clear role, with evidence of exposure in 9 species.
- The risk factor analysis suggests two pathways for M. natalensis:
 - Conspecific maintenance: Virus circulates among individuals with few, but targeted, contacts.
 - Interspecific spillover: "Hub" individuals with many diverse contacts are at risk from the wider community.
- Limitations: Inferred contacts, removal trapping.

Ecologically-informed, habitat-specific strategies are crucial for effective Lassa fever surveillance and control.

Conclusions:

- Small mammal contact networks are highly structured by anthropogenic land use.
- Agriculture is a key habitat for intra-specific transmission in the reservoir, M.
 natalensis.
- LASV circulates in a complex multi-host system where inter-species contact is an important, underappreciated risk factor.

Public Health Implications:

- "One-size-fits-all" control strategies are likely suboptimal.
- Targeting interventions in agricultural settings (e.g., rodent control) could be highly effective at disrupting LASV at its source.

Acknowledgements

Funding: Biotechnology and Biological Sciences Research Council and PANDORA-ID-NET

Institutions: Njala University, Royal Veterinary College, LSHTM, UCL, BNITM

Research Team: David Simons, Ravi Goyal, Umaru Bangura, Rory Gibb, Ben Rushton, Dianah Sondufu, Joyce Lamin, James Koninga, Momoh Jimmy, Mike Dawson, Joseph Lahai, Rashid Ansumana, Elisabeth Fichet-Calvet, Richard Kock, Deborah Watson-Jones, Kate E. Jones

Communities: Thank you to the communities of Baiama, Lalehun, Lambayama, and Seilama for their partnership.

Thank you Merci Obrigado

